Using Electrochemical Impedance Spectroscopy to Characterize Vertically - Aligned Carbon Nanotube Forest Porosimetry

نویسندگان

  • Yuan Lu
  • Carl V. Thompson
چکیده

Carbon nanotubes have generated much research interest and potential applications due to their unique properties such as their high tensile strength, high thermal conductivity, and unique semiconductor properties. Vertically-aligned carbon nanotubes (VA-CNTs) have been used in applications for electrochemical systems in energy storage systems and desalination systems. Typical methods of characterizing the morphology and composition of CNTs are limited in providing information on the packing density of CNTs, and therefore, an effective method for in situ characterization of VA-CNT electrodes is needed. This method explores the use of impedance spectroscopy and other electrochemical methods to characterize VA-CNTs in situ. VA-CNTs forests were grown via chemical vapor densification on pre-oxidized silicon wafers, mechanically densified to achieve varying volume fractions (1%, 2%, 5%, and 10%), and tested in a three-electrode electrochemical cell. Electrochemical techniques (cyclic voltammetry, impedance spectroscopy, and potentiostatic techniques) were used to measure the performance of the VA-CNTs in 1 M and 500 mM electrolyte solutions. Optimization of the experimental setup design and data collection methods yielded data that resulted in the expected cyclic voltammetry response and impedance behavior of porous electrodes. A transmission line model-pore size distribution (TLM-PSD) model was applied to the data collected in order to predict and model porosimetry characteristics. Porous behavior was observed in the VA-CNT electrodes of all volume fractions tested, and the impedance spectra showed that the volume fraction affected the overall impedance but not the characteristic shape of the spectra. Comparison between the impedance data collected in 1 M NaCl and 500 mM NaCl showed the expected corresponding inverse correlation with solution conductivity. Parameters that describe the VA-CNT electrode porosity were calculated and predicted using electrochemical data and the TLM-PSD model. The porous volume Vtot and total ionic conductance Yp values calculated using the model applied to the impedance spectroscopy data showed trends as expected for the different volume fractions of VA-CNT. The results show that electrochemical impedance spectroscopy can be used to characterize certain physical characteristics of the VA-CNT electrodes and further development of the model can yield insights into the porous geometry of VA-CNT forests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel.

Highly aligned multi-wall carbon nanotubes were synthesized in the shape of towers and embedded into fluidic channels as electrodes for impedance measurement of LNCaP human prostate cancer cells. Tower electrodes up to 8 mm high were grown and easily peeled off a silicon substrate. The nanotube electrodes were then successfully soldered onto patterned printed circuit boards and cast into epoxy ...

متن کامل

Optimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes

Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...

متن کامل

Porous boron-doped diamond/carbon nanotube electrodes.

Nanostructuring boron-doped diamond (BDD) films increases their sensitivity and performance when used as electrodes in electrochemical environments. We have developed a method to produce such nanostructured, porous electrodes by depositing BDD thin film onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (CNTs). The CNTs had previously been exposed to a suspension ...

متن کامل

Artificial introduction of defects into vertically aligned multiwalled carbon nanotube ensembles: Application to electrochemical sensors

Carbon nanotubes CNTs inevitably contain defects that exert a significant influence on their physical, electrical, and electrochemical properties. In this study, we subject vertically aligned multiwalled CNT ensembles to argon and hydrogen ion irradiation, to artificially introduce defects into the structure. Subsequently, Raman spectroscopy in conjunction with electrochemical analyses was used...

متن کامل

Biofouling Behavior on Forward Osmosis Using Vertically Aligned CNT Membrane on Alumina

Nowadays, forward osmosis (FO) with many advantages in water treatment, are so attractive for researchers and investigators that the studies are going to optimize and increase its efficiency. However one of the most controversial operating malfunctions of FO process is fouling that limits the FO global application. In the following research, vertically aligned carbon nanotube (VACNT) on alumina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015